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Abstract
Our theoretical approach for prediction of folding/unfolding nuclei in three-
dimensional protein structures is based on a search for free energy saddle points
on networks of protein unfolding pathways. Under some approximations, this
search is rapidly performed by dynamic programming and results in prediction
of � values, which can be compared with those found experimentally. We
show that the presented theoretical approach can be used to outline a folding
nucleus in proteins’ 3D structure. We demonstrate that incorporation of
such ‘details’ as hydrogen atoms (in addition to the heavy ones) improves
prediction of the folding nuclei. The model provides good predictions of folding
nuclei for proteins whose 3D structures have been determined by x-ray, and is
less successful for proteins whose structures have been determined by NMR.
Besides, the same dynamic programming-based calculation yields the transition
state free energy, and thus allows one to estimate the protein folding rate. A more
direct estimate of the folding rate can be obtained from Monte Carlo simulation
of refolding of known 3D protein structure, which is also described in this
work. The refolding times obtained from dynamic programming and Monte
Carlo simulations correlate reasonably well with logarithms of experimentally
measured folding rates at mid-transition.

1. Introduction

1.1. Folding nucleus from experiment and theory

The understanding of the nucleation mechanism has a long, contradictory and still unfinished
story. The story started with pioneer experimental studies of protein folding pathways and,
specifically, transition states (TSs) on these pathways; this has been done using site-directed
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Figure 1. Folding nucleus identification using site-directed mutations (a scheme). (a) Mutation of
a residue having its native environment and conformation (i.e., its native interactions) already in
the transition state TS changes the mutant’s folding rate rather than its unfolding rate. (b) Mutation
of a residue which remains denatured in the TS has the opposite effect. ‘Wild type’ means non-
mutated protein. kapp = kf + ku, where kf is the folding rate and ku is the unfolding rate: thus,
kapp ≈ kf in the folding zone (where kf � ku), kapp ≈ ku in the unfolding zone (where kf � ku)
and kf ≈ ku ≈ kapp/2 at the mid-transition [2]. Extrapolations which are necessary for �f -value
analysis are drawn by dashed lines to the zero denaturant concentration.

mutations [1–3]. The ‘folding nucleus’, the folded part of the transition state, plays a key role
in protein folding: its instability determines the folding and unfolding rates.

It should be stressed that the folding nucleus is not the molten globule, although some of
their characteristics may be similar [1]: the nucleus corresponds to the free energy maximum,
while the molten globule corresponds to the free energy minimum [4]. It has been shown that
the nucleus looks like some part of the 3D structure of the native protein [1, 2] which is often
surrounded by some unstructured, probably molten-globule-like drop.

So far, there is only one (unfortunately, very laborious) experimental method to identify
folding nuclei in proteins: to find residues whose mutations affect the folding rate by changing
the TS stability as strongly as that of the native protein (figure 1). For the basics of this method
and pioneer works see [1, 3, 5–7].

The participation of a residue in the folding nucleus is expressed by the residue’s �f value.
For a given residue, its �f is defined as

�f = � ln kf/� ln K , (1)

where kf is the folding rate constant, K = kf/ku is the folding–unfoldingequilibrium constant,
and � means the shift of the corresponding value induced by mutation of this residue.
According to the model of a native-like folding nucleus [1, 2], �f = 1 means that the residue
has its native conformation and environment already in the transition state (i.e., that this residue
is in the folding nucleus), while �f = 0 means that the residue remains unfolded in the TS.
The values �f ≈ 0.5 are ambiguous: either the residue is at the surface of the nucleus, or it
is in one of the alternative nuclei, belonging to different folding pathways. It is noteworthy
that the values �f < 0 and �f > 1 (which would be inconsistent with the model of a native-
like folding nucleus) are extremely rare and never concern a residue with a reliable measured
� ln K .

To estimate �f , the rates kf and ku have to be measured at (or extrapolated to) the same
conditions. Usually, being interested in the ‘biologically relevant’ nucleus, one extrapolates
them to the zero denaturant concentration. However, it should be noted that the nucleus
corresponding to the protein’s mid-transition is outlined more reliably: here the extrapolation
is shorter and therefore more robust, especially when the branches of the chevron are curved;
the latter suggests a change of the nucleus with the folding conditions [8].
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Figure 2. (a) Profiles of experimental �f values obtained for B1 domains of protein G (filled
circles) and of protein L (open circles). (b), (c) Schemes of three-dimensional structures of these
domains coloured according to the �f values of the amino-acid residues, from white (�f = 0) to
black (�f = 1). The experimentally studied residues are shown as beads against the background of
the native chain fold. �f values are given for these only. Adapted from [63]. Although sequence
identity of B1 domains of G and L proteins is as low as 15% [64], the RMSD between Cα atoms
of these two structures after their superposition is 1.35 Å, indicating that the 3D structures of these
domains are similar. Nevertheless, their folding nuclei have different locations.

The major assumptions underlying the �f analysis of the folding nucleus by point
mutations [1] are that the mutations do not change substantially either the folding pathway, or
the nucleus, or the structure of the folded state, or the unfolded state ensemble. Experimentally,
this is proved to be usually correct when the mutated residue is not larger than the initial one,
and when the mutation is not connected with introduction of charges inside the globule; the
proof is made by double mutations [3]. However, some strong mutations can significantly
affect the distribution of structures in the TS ensemble [9].

Several other observations have been made.

(1) The TS-stabilizing contacts are very diverse. In some proteins the nucleus is stabilized
by hydrophobic interactions [10–12]; in some it includes hydrogen bonds and salt
bridges [13, 14].

(2) The position of the nucleus relatively to the whole protein structure is very diverse. In
some it is situated in the centre, in the hydrophobic core [10, 12, 15]; in some it is on the
boundary of the globule [12–14].

(3) The accessible surface areas of the nuclei are also rather different [16].

Proteins with different amino acid sequences but with similar three-dimensional structures
have similar folding nuclei as a rule [17–19]. However, there are several examples which show
that this is not always so (figure 2).

Summing up the experimental data, Grantcharova et al [20] conclude that mutations,
both artificial and natural, can radically change folding pathways (create and destroy folding
intermediates, transforming two- into multi-state folding proteins and vice versa, shift the
folding nuclei to the opposite side of the molecule, etc)—without any considerable variation
of three-dimensional structures of native proteins [20]. This means that the native structure is
a subject of much more severe natural selection than that of the folding nucleus and than of
folding pathways—at least when we speak about relatively small proteins, which in any case
usually fold much faster than they are synthesized by a ribosome.

As regards the theoretical search for folding/unfolding nuclei in proteins, several different
approaches have been suggested.



S1542 O V Galzitskaya et al

The idea of specific nuclei, reinforced by the lattice simulations of protein folding [21],
generated an evolutionary approach to prediction of the nuclei. It is based on the search
for a set of highly conserved residues having no obvious functional role [22–25]. It
should be mentioned that this approach, at best, can give only the common part of the
nuclei existing in homologous proteins. Moreover, some recent observations show that
the residue conservatism across the homologous proteins correlates with deep immersion
into the hydrophobic core of a protein [25] rather than into the folding nucleus [26]. It
should be noted that there is some correlation between the nuclei (the regions of high �f

values) and the hydrophobic cores and secondary structures [27–30], but it is rather low on
average [26, 28].

The most direct approach to the theoretical search for the nucleus is to generate a
plausible transition state for unfolding (which must coincide with that for folding closely
to mid-transition) using the all-atom molecular dynamic simulations of protein unfolding [31–
33]. According to these simulations, held for very few small proteins at highly denaturing
conditions (otherwise, the calculation takes too long), the unfolding is hierarchic [34–36]
(at least when it occurs far from the equilibrium): tertiary interactions break early, whereas
secondary structures remain longer. The repeated trajectories show a statistical distribution
around the experimentally found transition states and demonstrate a broad ensemble of the TS
structures. However, these simulations usually need extremely denaturing conditions (500 K,
etc) to be completed. Therefore, the transition states found for such an extreme unfolding
can be, in principle, rather different from those existing for folding [37]. Recently, however,
some molecular dynamic simulations of unfolding of very small proteins [38–40] have been
performed at more realistic, although also highly denaturating conditions. They have been
performed at temperatures accessible for ‘wet’ experiments (350 K), as well as for simulations
on current supercomputers. They gave TS structures which are consistent with experiment [40];
however, these simulations take enormous time and can be performed for very small proteins
only.

Further progress is due to the analysis of multidimensional networks of the protein folding–
unfolding trajectories performed by various algorithms [41, 42]. All these approaches [41–43]
use different approximations and algorithms, consider only the attractive native interactions
(the ‘Gō model’ [44]) to reduce the energy frustrations and heterogeneity of interactions,
and model the trade-off between the formation of attractive interactions and the loss of
conformational entropy during protein folding. These works also simulate unfolding of
known 3D protein structures rather than their folding, but the unfolding is considered close
to the mid-transition point, where folding and unfolding pathways coincide according to
the detailed balance principle. Under these ‘near-equilibrium’ conditions, all single-domain
proteins demonstrate two-state (i.e., ‘all-or-none’) transitions both in thermodynamics [45]
and kinetics [46, 47]. This means that at the mid-transition all semi-folded and misfolded
globules are unstable relative to both native and unfolded states of protein chain, and
this allows us to take into account only the pathways going from the native to the
unfolded state and to neglect those leading to misfolded globules, stabilized by non-native
interactions.

These works allowed the authors to outline the folding nuclei. Despite the relative
simplicity of these models, they give a promising (∼50%) correlation with experimental �

values [48–51]. This suggests that the chain’s folding pattern and the size of the protein, taken
into account by these models, play more important roles in folding than the high resolution
details of protein structure [42, 52, 53].

In this paper we briefly describe our approach for the prediction of folding nuclei and
estimation of protein folding rates.
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Figure 3. A sketch of the network of pathways of sequential unfolding (and folding) of native 3D
protein structure (S0). SL is the coil where all L links of the protein chain are disordered. In each
of the many intermediates of the type Sν , ν chain links (shown in the dashed line) are unfolded,
while the other L–ν links keep their native positions and conformations (they are shown as the solid
line against the background of a dotted cloud denoting the globular part of the intermediate). The
central structure in the lower line exemplifies a microstate with ν unfolded links forming one closed
unfolded loop and one unfolded tail; the central structure in the central line exemplifies a microstate
where ν unfolded links form two closed unfolded loops. The networks used in computations are
much larger than the one shown in the sketch: they include millions of semi-folded microstates.

2. Outlining folding nuclei

2.1. Approximations used in the model and estimation of free energy

We consider a network of simplified stepwise unfolding pathways (see figure 3), each step
of which is the removal of one ‘chain link’ (which includes several residues) from the native
protein 3D structure. The removed chain fragments are assumed to form a random coil; they
lose all their non-bonded interactions and gain the coil entropy. The next is the assumption
that the chain residues remaining in the globule keep their native positions and conformations
and that the unfolded regions do not fold into another, non-native globule. Thus, we actually
neglect non-native interactions. The main simplification is that we concentrate on the TS and
its free energy, rather than on a detailed description of the chain motions.

To use dynamic programming in searching for the TS for a network of folding–unfolding
pathways, we have, for computational reasons, to restrict this network by no more than ∼106

intermediate microstates. Therefore, we divide an N-residue protein chain into L ∼ 20–30
chain links. For the same computational reasons, we consider only the intermediates with no
more than two closed disordered loops in the middle of the chain plus the N- and the C-terminal
disordered tails.

Thus, our model considers the native structure S0, the unfolded state SL and an ensemble
of intermediate microstates Sν consisting of a native-like part and of ν unfolded chain links
(ν = 0 for S0, ν = L for SL , L being the total number of the chain links, and ν = 1, . . . , L −1
for the semi-folded intermediates with ν disordered links). The model uses a simple free
energy estimate [51]:

F(S) = ε × nnb
S − T

[
νS × σ +

∑
loops∈S

Sloop

]
. (2)
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Here S is a microstate; nnb
S is the number of native atom–atom contacts in the native-like part of

S (nnb
S does not include contacts of neighbour residues, also existing in the coil); ε is the energy

of one contact; νS is the number of residues in the unfolded part of S; T is the temperature;
and σ is the entropy difference between the coil and the native state of a residue (we take
σ = 2.3R according to Privalov [45], R being the gas constant). The sum � is taken over all
closed unfolded loops (see the legend to figure 3) protruding from the native-like part of S.

At the point of equilibrium between the native state S0 and the coil SL , we have
F(S0) = F(SL ); i.e., the average contact energy ε (which is influenced by the solvent and the
temperature) is

ε = −T Nσ/nnb
0 . (3)

Here at the mid-transition nnb
0 is the number of contacts in the native structure and N is the total

number of the protein chain residues. It follows from equations (2) and (3) that the F(S)/T
values (which only determine the transition state, see equation (6) below) do not depend on
temperature, provided that the solvent composition corresponds to the mid-transition at this
temperature.

The entropy spent to close a disordered loop between the still fixed residues k and l is
estimated [52] as

Sloop = − 5
2 R ln |k − l| − 3

2 R(r2
kl − a2)/(2Aa|k − l|); (4)

here rkl is the distance between the Cα atoms of residues k and l, a = 3.8 Å is the distance
between the neighbour Cα atoms in the chain, and A is the persistence length for a polypeptide
(according to Flory [54], we take A = 20 Å). The term − 5

2 R ln |k − l| is the main term
in equation (3); the coefficient − 5

2 (rather than Flory’s value − 3
2 ) follows from the condition

that a loop cannot penetrate inside the globule [52].

2.2. Transition states at the protein unfolding pathways

Let us consider some unfolding pathway w = (S0 → S1 → · · · → SL ); then F#
w =

max{F(S0), F(S1), . . . , F(SL )} is the free energy of the TS (‘free-energy barrier’) for pathway
w. The most efficient kinetic pathway has the minimal (over all the pathways) TS free energy,
F#

min = minpossible w{F#
w}: this pathway passes from S0 (the native state) to SL (the coil) via

the lowest free energy barrier. Let Sν−1 ∈ {Sν−1 → Sν} mean that Sν−1 can be transformed
into Sν in an elementary step (i.e., by removal of one link from the globular part of Sν−1).
At every pathway S0 → S1 → · · · → SL−1 → SL , all intermediates satisfy conditions
S1 ∈ {S1 → S2}, . . . , SL−2 ∈ {SL−2 → SL−1} (while the condition SL−1 ∈ {SL−1 → SL } is
satisfied automatically). Thus,

F#
min = min{max{F(S0), F(S1), . . . , F(SL )}}, (5)

S1, . . . , SL−1

S1 ∈ {S1 → S2}
. . .

SL−2 ∈ {SL−2 → SL−1}
where the maximum is taken over the microstates’ free energies along every pathway
S0 → S1 → · · · → SL−1 → SL , and the minimum is taken across all the pathways.
Despite a huge number of possible pathways, the F#

min-value can be calculated by dynamic
programming [55, 56].

The intermediates S with F#(S) = F#
min give a narrow ensemble of ‘the best’ transition

microstates {S#
min} with the minimal free energy, while the intermediates with F#(S) = F(S)
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give a more broad ensemble {S#} of all the possible passes over the free energy barrier separating
S0 from SL . Although the ensemble {S#} may be somewhat redundant (since a pathway to the
TS high in free energy may pass via some TS of the lower free energy), it has been shown [41]
that this ensemble of all the possible passes describes the TS better than the ensemble {S#

min}
of ‘the best’ TSs only. Further, the ensemble {S#} is used only.

To outline the nucleus, we investigate the ensembles {S#} of all possible transition states.
The value of the Boltzmann probability of microstate S# in the ensemble {S#} is

P(S#) = exp(−F(S#)/RT )/ exp(−F#/RT ), (6)

where

exp(−F#/RT ) = �S# exp(−F(S#)/RT ) (7)

is the partition function of the totality of transition states, and F# is their total free energy.
The sum is taken over the whole ensemble {S#}. The lower the free energy F(S#), the higher
the weight P(S#), the more rapid the pathway via this S# (according to the conventional
exponential dependence of reaction rate on the transition state free energy [57]), and therefore
the more the chains use this pass S# at folding and unfolding.

2.3. Computation of � values

The theory estimates the � values as follows. According to equations (1) and (2), the value
� ln K = �r [F(S0) − F(SL )] is equal to ε × �r (nnb

0 ), where ε is the contact energy, and
�r (nnb

0 ) is the residue r mutation-induced change in the number of contacts in the native state
S0 (since all native contacts are assumed to be equal, and no contacts are assumed to be present
in the unfolded state SL ).

Correspondingly, � ln kf = �r [F(T S) − F(SL )] = ε × 〈�r (nnb
S )〉S#, where 〈�r (nnb

S )〉S#

is the same residue r mutation-induced change in the number of native contacts in the transition
state, averaged over the TS ensemble {S#}. This change can be calculated as

〈�r (n
nb
S )〉S# = �S# P(S#)�r (n

nb
S#), (8)

where P(S#) is the Boltzmann probability of microstate S# in the TS ensemble (see
equation (9)), and �r (nnb

S#) is the residue r mutation-induced change in the number of native
contacts in microstate S#.

The values �r (nnb
S ) can be calculated for each microstate S from atomic coordinates

of non-mutated protein when we know what atoms are deleted or substituted in the mutant.
However, this calculation assumes that the protein structure is not disturbed by mutation.
Therefore, we have to consider only those mutations which do not insert new atomic groups.

The computed values

� = 〈�r (n
nb
S )〉S#/�r (n

nb
0 ) (9)

are to be compared with the experimental �f values to estimate the correlation between the
theory and experiment.

2.4. Calculated � values in comparison with experiment

The calculations are performed for all 17 proteins,whose experimental �f values are known for
many residues, and the 3D structure is known as well [51]. Transition states for the folding–
unfolding pathways are found using the DP technique and a simple free energy estimate
given by equation (2). All the computations concern the point of thermodynamic equilibrium
between the native and the coil state of each separate wild-type protein. This point is defined
by equation (3).
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The averaged (over all 17 proteins) coefficient of correlation between computed and
experimental � values is 0.40 ± 0.37 when the calculations are based on the heavy atoms
only. This is close to the correlations obtained earlier by us [41] and by other researchers,
who used considerable sets of proteins to verify results of their calculations [42, 43, 50]. In
particular, this coefficient is 0.35 ± 0.34 for all four methods considered by Alm et al [50].

However, when we take into account hydrogen atoms in addition to the heavy ones,
the averaged correlation coefficient increases to 0.54 ± 0.27 and the results become more
significant. The positive effect caused by inclusion of hydrogen atoms seems to be due to
increased (and thus more reliable) statistics of contacts.

The �-value plots (see figure 3 in [51]) show that theoretical and experimental data are
usually in a reasonable agreement. But, although the correlation with experiment is rather
high (0.6–0.9, see figures 4(a), (b)) for half of the proteins used in this study, for some other
proteins the correlation is below 0.35 (and even negative, see figure 4(c)). The latter mostly
concerns proteins with the NMR-resolved 3D structures.

The prediction of � values for the β hairpin of the B1 domain of protein G has been made
in the work of Chang et al [58]. Our predicted � values for this β hairpin in the whole protein
are in agreement with published experimental data (the correlation coefficient for the whole
protein is 0.76; see figure 4(b)) and have the same behaviour as in the work of Chang et al
[58].

We observe that the nuclei outlined in x-ray structures have much better agreement with
experimental data than the ones outlined in NMR structures. That is, the averaged correlation
coefficient for 11 x-ray-resolved protein structures is 0.65±0.18 when all (heavy and hydrogen)
atoms are taken into account. In a contrast, for six NMR-resolved proteins the averaged
correlation coefficient is only 0.34 ± 0.32, even when all atoms are taken into account. Thus,
the NMR structures, which are less accurate than the x-ray ones [59], are less suitable for
calculation of � values.

3. Estimation of protein folding rates

3.1. Estimation of protein folding rate from calculation of transition state free energy

Since the folding rate kf should be proportional to exp(−F#/RT ), and since our model
allows us to calculate the transition state free energy F# (see equation (7)), we can estimate a
correlation of computed F#/RT values with experimentally obtained folding rates kf (or rather,
ln(kf)). The computed (for mid-transition,see above) −F#/RT values are in a good correlation
with ln(kf at mid−transition): the correlation coefficient is 0.73 ± 0.11 (figure 5). However, these
−F#/RT values virtually do not correlate with experimental folding rates in water, far from
the mid-transition (or rather, with ln(kf in−water)): here the correlation coefficient is equal to
0.18 ± 0.23. The absence of the latter correlation is not a surprise, since the computed F#

values correspond to the mid-transition rather than to the in-water (‘biological’) conditions.

3.2. Advantage and disadvantage of dynamic programming and Monte Carlo methods

To use dynamic programming in searching for the TS for a network of folding–unfolding
pathways, we have, for computational reasons, to restrict this network to no more than ∼106

intermediates. Therefore, we divide an N-residue protein chain into L ∼ 20–30 chain links
and use a limited number of loops. Using a Monte Carlo (MC) simulation of folding, we can,
in principle, avoid these simplifications.



Outlining folding nuclei and estimation of protein folding rates S1547

Figure 4. Profiles of � values for proteins with high correlation with experiment ((a), (b)) and
with the worst correlation with experiment (c). Open circles connected with a dotted line are
experimental �f values; filled circles connected with a continuous line are theoretical � values
for the same residues. The �-value calculations are done with hydrogen atoms and with contact
distance between heavy atoms rcont = 6 Å, contact distance between hydrogen and heavy atoms
rH−heavy = 5 Å, contact distance between hydrogen atoms rHH = 4 Å; the links include l = 5
residues. The rectangles at the top of each plot show the native positions in the chain of α and 310
helices (broad rectangles), and of β strands (narrow shaded rectangles).

3.3. Estimation of protein folding rate from Monte Carlo simulations

We investigated folding of the known native structures, starting from the unfolded chain. This
was done by Monte Carlo (MC), using the Metropolis scheme [60] at the point of mid-transition.
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Figure 5. Correlation between the computed transition state free energy F#/RT and the mid-
transition folding time t = 1/kf (measured in seconds and represented in a logarithmic scale) for
all 17 investigated wild-type proteins (PDB entries are the following: 1bf4, 1btb, 1fkb, 1pgb, 1ris,
1rnb, 1shg, 1srm, 1ten, 1tiu, 1ttf, 1urn, 2ci2, 2ptl, 2vil, 3chy; the 3D structure of the suc1 protein
was kindly presented by J Schymkowitz). The correlation coefficient is 0.73 ± 0.11. Ten black
circles correspond to the proteins presented in figure 7.

The free energy function is given by equations (2), (3). The kinematic scheme of elementary
movements includes, as above, insertion of a residue from the coil to its native position in the
known 3D structure or removal of a residue from its native position to the coil [61]. In this
way, we did a travel from the unfolded state to the known 3D structure without visiting the
misfolded states.

An elementary MC step was performed as follows. We randomly chose a residue. If the
chosen residue had been already fixed in the native position we tried to put it to the coil. If the
chosen residue was in the coil, we tried to put it in the native position. Then we computed the
free energy difference, �F , between new and previous structures. According to Metropolis
et al [60], the MC step leads to the new structure with a probability w = exp(−�F/RT ) if
�F > 0, and w = 1 if �F � 0.

To estimate the characteristic time of coming to the native structure (first passage time,
t1/2) we performed 50 MC runs for every protein [62], and t1/2 was determined as the number
of MC steps required to complete 50% of MC runs (25 of 50 runs) (see [62]). Having a limit
of 108 MC steps, we were only able to calculate t1/2 for ten proteins from the 17 investigated
here. Figure 6 presents typical MC kinetics for one of the proteins. It should be noted that
eight of the ten proteins reached the native state while the remaining two proteins arrived at
the stable states which were close to the native state but still had several residues unstructured.
It is interesting that the structures of both these proteins are NMR resolved.

The computed (for mid-transition) t1/2 values for ten proteins are in a good correlation
with those experimentally measured at mid-transition protein folding time: the correlation
coefficient is 0.70 ± 0.05 (figure 7). It should be mentioned here that the coefficient
of correlation obtained with the Monte Carlo method is better than one obtained from
dynamic programming-based calculation for the same ten proteins (the correlation coefficient
is 0.48 ± 0.10).



Outlining folding nuclei and estimation of protein folding rates S1549

Figure 6. Monte Carlo kinetics for refolding of src SH3 domain. The plots show a dependence of
the free energy (black line) and fraction of native residues (grey line) on the number of MC step.
The native state here is achieved in 2.5 × 105 steps. Arrows point to the native state and to FN,
free energy of the native state.

Figure 7. Correlation between the computed characteristic first passage time t1/2 (the number of
MC steps made until half of the molecules fold) and the experimentally measured folding time
(i.e., t = 1/kf ) at the mid-transition for ten proteins (PDB entries are as follows: 1bf4, 1pgb, 1rnb,
1shg, 1srm, 1ttf, 2ci2, 2ptl, 2vil, 3chy), where the folding simulation has been completed within
108 MC steps. The experimental folding time t is measured in seconds; the time of simulation, t1/2,
is measured in MC steps. Both are represented in a logarithmic scale. The correlation coefficient
is 0.70 ± 0.05.

4. Conclusion

This work shows that the presented theoretical approach is able to outline the folding nucleus
in proteins’ 3D structure. Thus, this approach captures some basic characteristics of protein
folding and unfolding, though it neglects many details of inter-residue interactions and chain
movements. The model provides good predictions of folding nuclei for proteins whose 3D
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structures have been determined by x-rays, and exhibits a more limited success for proteins
whose structures have been determined by NMR. Besides, the same dynamic programming-
based calculation yields the transition state free energy, and thus allows one to estimate the
protein folding rate. A more direct estimate of the folding rate can be obtained from Monte
Carlo simulation of refolding of known 3D protein structure, which is also described in this
work. The refolding times obtained from dynamic programming and Monte Carlo simulations
correlate reasonably well with logarithms of experimentally measured folding rates at mid-
transition.
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